DAM-3025D User's Manual

DAM-3025D Module

Introduction

Features

4-channel Isolated Digital Input/ 8-channel Open-collector Output Module

➤ Input: 4SE (common cathode / anode)

High Level: 4V~30V

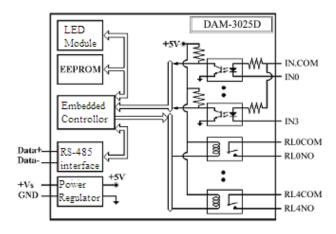
Low Level: 0V~1V

Output: 8-channel Open-collector

➤ Isolated Voltage: 3750V

Max Load:30V, 100mA

> Support dual watchdogs


➤ LED indicate input/output status

Power Supply: unregulated $+10 \sim +30 V_{DC}$

➤ Power Consumption:1.37W@24V_{DC}

Industrial Design

DAM-3025D was designed to use in industrial environment. It can be installed in standard DIN rail inside the cabinet. And it can be powered by unregulated $10V_{DC} \sim 30V_{DC}$ to meet the various power supplied source in field. It also withstands ambient temperature up to 60° C and resists the effects of vibration and mechanical shock.

Wiring & Installation

Power supply requirements: unregulated $+10V_{DC} \sim +30~V_{DC}$. "+Vs" is a positive, and "GND" is ground. "DATA +" and "DATA-" connect with "DATA +" and "DATA-" (or "A" and "B") of RS-232/RS-485 transformation module, then connect transformation module with computer, do not hot plug carefully. The power indicator flashes after wiring is correct, then you can communication with the host computer.

According to the label directs color to wiring:

+Vs (R) Red DATA+ (Y) Yellow GND (B) Black DATA- (G) Green

DAM-3025D

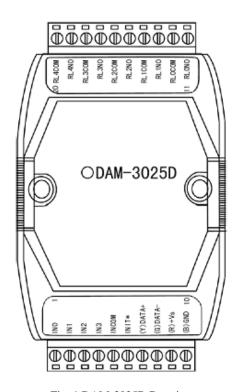


Fig. 1 DAM-3025D Drawing

DAM-3025D can be installed in standard DIN rail inside the cabinet, it also can be installed by stacking mode.

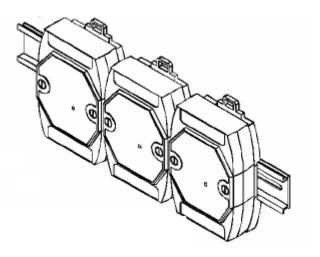


Fig.2 standard DIN installation

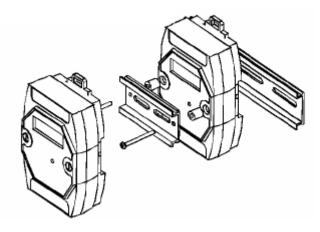
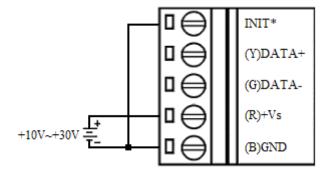
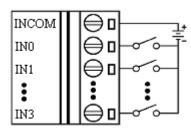


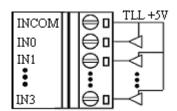
Fig.3 stack installation

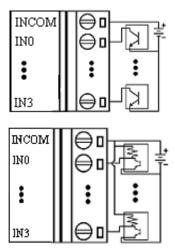

Wiring Application

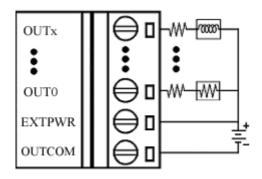
Reset Connection:


Shorted the INIT * and GND shorted, add $+10 \sim +30$ VDC between +Vs and GND, power on, the module indicator quickly flashes three times, power off until the indicator stops flashing, disconnect the INIT * and GND, then reset the module has been completed.

After reset successfully, the module restore the factory default values:


Module Address: 1 Baud Rate: 9600


Wet Contact Signal input


TTL/CMOS Signal Input

Open-collector Signal Input

Open-collector Output

Default Setting

If the module's address or baud rate is wrong, or forget the last modified value, the module can be reverted to default settings. Steps: Short-circuit the "INIT*" and "GND" when there is no power; power-on for 3 seconds, power off, disconnect "INIT*" and "GND". The module is reverted to the default settings.

♣ Address: 00

♣ Baud Rate :9600bps

Noparity

♣ The serial port default work mode: parity bit: none

data bits: 8 stop bit: 1

Code Configuration Table

Baud Rate Configuration Code Table

Code	00	01	02	03	04	05	06	07
Rate	1200	2400	4800	9600	19200	38400	57600	115200

Pin Definition

Pin	Name	Function
1	IN0	Digital input 0-ch
2	IN1	Digital input 1-ch

3	IN2	Digital input 2-ch
4	IN3	Digital input 3-ch
5	INCOM	Digital input common terminal
6	INIT*	reset pin, connect with(B)GND, then power-on to reset
7	(Y)DATA+	RS-485 positive
8	(G)DATA-	RS-485 negative
9	(R)+Vs	DC Power Supply (+),+10~+30V _{DC}
10	(B)GND	DC Power Supply (-)
11	RL0N0	Relay output 0-ch
12	RL0COM	The common terminal of relay output 0-ch
13	RL1NO	Relay output 1-ch
14	RL1COM	The common terminal of relay output 1-ch
15	RL2NO	Relay output 2-ch
16	RL2COM	The common terminal of relay output 2-ch
17	RL3NO	Relay output 3-ch
18	RL3COM	The common terminal of relay output 3-ch
19	RL4NO	Relay output 4-ch
20	RL4COM	The common terminal of relay output 4-ch